Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
PLoS Negl Trop Dis ; 18(3): e0012022, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484041

RESUMO

Pacific Island countries have experienced periodic dengue, chikungunya and Zika outbreaks for decades. The prevention and control of these mosquito-borne diseases rely heavily on control of Aedes aegypti mosquitoes, which in most settings are the primary vector. Introgression of the intracellular bacterium Wolbachia pipientis (wMel strain) into Ae. aegypti populations reduces their vector competence and consequently lowers dengue incidence in the human population. Here we describe successful area-wide deployments of wMel-infected Ae. aegypti in Suva, Lautoka, Nadi (Fiji), Port Vila (Vanuatu) and South Tarawa (Kiribati). With community support, weekly releases of wMel-infected Ae. aegypti mosquitoes for between 2 to 5 months resulted in wMel introgression in nearly all locations. Long term monitoring confirmed a high, self-sustaining prevalence of wMel infecting mosquitoes in almost all deployment areas. Measurement of public health outcomes were disrupted by the Covid19 pandemic but are expected to emerge in the coming years.


Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Infecção por Zika virus , Zika virus , Animais , Humanos , Aedes/genética , Aedes/microbiologia , Mosquitos Vetores/genética , Mosquitos Vetores/microbiologia , Wolbachia/genética , Fiji/epidemiologia , Vanuatu
2.
mBio ; 15(2): e0249523, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38132636

RESUMO

Wolbachia are a genus of insect endosymbiotic bacteria which includes strains wMel and wAlbB that are being utilized as a biocontrol tool to reduce the incidence of Aedes aegypti-transmitted viral diseases like dengue. However, the precise mechanisms underpinning the antiviral activity of these Wolbachia strains are not well defined. Here, we generated a panel of Ae. aegypti-derived cell lines infected with antiviral strains wMel and wAlbB or the non-antiviral Wolbachia strain wPip to understand host cell morphological changes specifically induced by antiviral strains. Antiviral strains were frequently found to be entirely wrapped by the host endoplasmic reticulum (ER) membrane, while wPip bacteria clustered separately in the host cell cytoplasm. ER-derived lipid droplets (LDs) increased in volume in wMel- and wAlbB-infected cell lines and mosquito tissues compared to cells infected with wPip or Wolbachia-free controls. Inhibition of fatty acid synthase (required for triacylglycerol biosynthesis) reduced LD formation and significantly restored ER-associated dengue virus replication in cells occupied by wMel. Together, this suggests that antiviral Wolbachia strains may specifically alter the lipid composition of the ER to preclude the establishment of dengue virus (DENV) replication complexes. Defining Wolbachia's antiviral mechanisms will support the application and longevity of this effective biocontrol tool that is already being used at scale.IMPORTANCEAedes aegypti transmits a range of important human pathogenic viruses like dengue. However, infection of Ae. aegypti with the insect endosymbiotic bacterium, Wolbachia, reduces the risk of mosquito to human viral transmission. Wolbachia is being utilized at field sites across more than 13 countries to reduce the incidence of viruses like dengue, but it is not well understood how Wolbachia induces its antiviral effects. To examine this at the subcellular level, we compared how different strains of Wolbachia with varying antiviral strengths associate with and modify host cell structures. Strongly antiviral strains were found to specifically associate with the host endoplasmic reticulum and induce striking impacts on host cell lipid droplets. Inhibiting Wolbachia-induced lipid redistribution partially restored dengue virus replication demonstrating this is a contributing role for Wolbachia's antiviral activity. These findings provide new insights into how antiviral Wolbachia strains associate with and modify Ae. aegypti host cells.


Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Animais , Humanos , Vírus da Dengue/fisiologia , Wolbachia/fisiologia , Gotículas Lipídicas , Replicação Viral , Retículo Endoplasmático , Antivirais , Lipídeos
3.
BMJ Glob Health ; 8(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37989350

RESUMO

INTRODUCTION: Field trials and modelling studies suggest that elimination of dengue transmission may be possible through widespread release of Aedes aegypti mosquitoes infected with the insect bacterium Wolbachia pipientis (wMel strain), in conjunction with routine dengue control activities. This study aimed to develop a modelling framework to guide planning for the potential elimination of locally acquired dengue in Yogyakarta, a city of almost 400 000 people in Java, Indonesia. METHODS: A scenario-tree modelling approach was used to estimate the sensitivity of the dengue surveillance system (including routine hospital-based reporting and primary-care-based enhanced surveillance), and time required to demonstrate elimination of locally acquired dengue in Yogyakarta city, assuming the detected incidence of dengue decreases to zero in the future. Age and gender were included as risk factors for dengue, and detection nodes included the probability of seeking care, probability of sample collection and testing, diagnostic test sensitivity and probability of case notification. Parameter distributions were derived from health system data or estimated by expert opinion. Alternative simulations were defined based on changes to key parameter values, separately and in combination. RESULTS: For the default simulation, median surveillance system sensitivity was 0.131 (95% PI 0.111 to 0.152) per month. Median confidence in dengue elimination reached 80% after a minimum of 13 months of zero detected dengue cases and 90% confidence after 25 months, across different scenarios. The alternative simulations investigated produced relatively small changes in median system sensitivity and time to elimination. CONCLUSION: This study suggests that with a combination of hospital-based surveillance and enhanced clinic-based surveillance for dengue, an acceptable level of confidence (80% probability) in the elimination of locally acquired dengue can be reached within 2 years. Increasing the surveillance system sensitivity could shorten the time to first ascertainment of elimination of dengue and increase the level of confidence in elimination.


Assuntos
Aedes , Vírus da Dengue , Dengue , Animais , Humanos , Indonésia/epidemiologia , Aedes/microbiologia , Incidência , Dengue/epidemiologia , Dengue/prevenção & controle
4.
PLoS Negl Trop Dis ; 17(11): e0011713, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38032857

RESUMO

BACKGROUND: The introduction of Wolbachia (wMel strain) into Aedes aegypti mosquitoes reduces their capacity to transmit dengue and other arboviruses. Randomised and non-randomised studies in multiple countries have shown significant reductions in dengue incidence following field releases of wMel-infected Ae. aegypti. We report the public health outcomes from phased, large-scale releases of wMel-Ae. aegypti mosquitoes throughout three contiguous cities in the Aburrá Valley, Colombia. METHODOLOGY/PRINCIPAL FINDINGS: Following pilot releases in 2015-2016, staged city-wide wMel-Ae. aegypti deployments were undertaken in the cities of Bello, Medellín and Itagüí (3.3 million people) between October 2016 and April 2022. The impact of the Wolbachia intervention on dengue incidence was evaluated in two parallel studies. A quasi-experimental study using interrupted time series analysis showed notified dengue case incidence was reduced by 95% in Bello and Medellín and 97% in Itagüí, following establishment of wMel at ≥60% prevalence, compared to the pre-intervention period and after adjusting for seasonal trends. A concurrent clinic-based case-control study with a test-negative design was unable to attain the target sample size of 63 enrolled virologically-confirmed dengue (VCD) cases between May 2019 and December 2021, consistent with low dengue incidence throughout the Aburrá Valley following wMel deployments. Nevertheless, VCD incidence was 45% lower (OR 0.55 [95% CI 0.25, 1.17]) and combined VCD/presumptive dengue incidence was 47% lower (OR 0.53 [95% CI 0.30, 0.93]) among participants resident in wMel-treated versus untreated neighbourhoods. CONCLUSIONS/SIGNIFICANCE: Stable introduction of wMel into local Ae. aegypti populations was associated with a significant and sustained reduction in dengue incidence across three Colombian cities. These results from the largest contiguous Wolbachia releases to-date demonstrate the real-world effectiveness of the method across large urban populations and, alongside previously published results, support the reproducibility of this effectiveness across different ecological settings. TRIAL REGISTRATION: NCT03631719.


Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Animais , Humanos , Colômbia/epidemiologia , Cidades/epidemiologia , Incidência , Análise de Séries Temporais Interrompida , Estudos de Casos e Controles , Reprodutibilidade dos Testes , Controle Biológico de Vetores/métodos , Dengue/epidemiologia , Dengue/prevenção & controle , Mosquitos Vetores
5.
PLoS Negl Trop Dis ; 17(9): e0011593, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37656759

RESUMO

Dengue virus (DENV) transmission from humans to mosquitoes is a poorly documented, but critical component of DENV epidemiology. Magnitude of viremia is the primary determinant of successful human-to-mosquito DENV transmission. People with the same level of viremia, however, can vary in their infectiousness to mosquitoes as a function of other factors that remain to be elucidated. Here, we report on a field-based study in the city of Iquitos, Peru, where we conducted direct mosquito feedings on people naturally infected with DENV and that experienced mild illness. We also enrolled people naturally infected with Zika virus (ZIKV) after the introduction of ZIKV in Iquitos during the study period. Of the 54 study participants involved in direct mosquito feedings, 43 were infected with DENV-2, two with DENV-3, and nine with ZIKV. Our analysis excluded participants whose viremia was detectable at enrollment but undetectable at the time of mosquito feeding, which was the case for all participants with DENV-3 and ZIKV infections. We analyzed the probability of onward transmission during 50 feeding events involving 27 participants infected with DENV-2 based on the presence of infectious virus in mosquito saliva 7-16 days post blood meal. Transmission probability was positively associated with the level of viremia and duration of extrinsic incubation in the mosquito. In addition, transmission probability was influenced by the day of illness in a non-monotonic fashion; i.e., transmission probability increased until 2 days after symptom onset and decreased thereafter. We conclude that mildly ill DENV-infected humans with similar levels of viremia during the first two days after symptom onset will be most infectious to mosquitoes on the second day of their illness. Quantifying variation within and between people in their contribution to DENV transmission is essential to better understand the biological determinants of human infectiousness, parametrize epidemiological models, and improve disease surveillance and prevention strategies.


Assuntos
Culicidae , Dengue , Infecção por Zika virus , Zika virus , Animais , Humanos , Viremia , Infecção por Zika virus/epidemiologia , Dengue/epidemiologia
6.
Parasit Vectors ; 16(1): 308, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653429

RESUMO

BACKGROUND: Dengue virus serotypes (DENV-1 to -4) can be transmitted vertically in Aedes aegpti mosquitoes. Whether infection with the wMel strain of the endosymbiont Wolbachia can reduce the incidence of vertical transmission of DENV from infected females to their offspring is not well understood. METHODS: A laboratory colony of Vietnamese Ae. aegypti, both with and without wMel infection, were infected with DENV-1 by intrathoracic injection (IT) to estimate the rate of vertical transmission (VT) of the virus. VT in the DENV-infected mosquitoes was calculated via the infection rate estimation from mosquito pool data using maximum likelihood estimation (MLE). RESULTS: In 6047 F1 Vietnamese wild-type Ae. aegypti, the MLE of DENV-1 infection was 1.49 per 1000 mosquitoes (95% confidence interval [CI] 0.73-2.74). In 5500 wMel-infected Ae. aegypti, the MLE infection rate was 0 (95% CI 0-0.69). The VT rates between mosquito lines showed a statistically significant difference. CONCLUSIONS: The results reinforce the view that VT is a rare event in wild-type mosquitoes and that infection with wMel is effective in reducing VT.


Assuntos
Aedes , Vírus da Dengue , Wolbachia , Feminino , Animais , Transmissão Vertical de Doenças Infecciosas , Laboratórios
7.
Vaccine ; 41(33): 4888-4898, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37391311

RESUMO

Countermeasures against Zika virus (ZIKV) epidemics are urgently needed. In this study we generated a ZIKV virus-like particle (VLP) based vaccine candidate and assessed the immunogenicity of these particles in mice. The ZIKV-VLPs were morphologically similar to ZIKV by electron microscopy and were recognized by anti-Flavivirus neutralising antibodies. We observed that a single dose of unadjuvanted ZIKV-VLPs, or inactivated ZIKV, generated an immune response that lasted over 6 months, but did not neutralize ZIKV infection of cells in vitro. However, when we co-administered the ZIKV VLPs with either Aluminium hydroxide (Alhydrogel®; Alum), AddaVax or Pam2Cys we observed that Alum was the most effective in a single dose regime, since it not only produced antibodies that neutralized the virus, but also generated a greater number of antigen-specific memory B cells. We additionally observed that the generation of the neutralising antibodies persisted for up to 6 months. Our results suggest that a single dose ZIKV VLPs could be a suitable single dose vaccine candidate for use in outbreak settings.


Assuntos
Vacinas Virais , Infecção por Zika virus , Zika virus , Animais , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Adenoviridae
8.
PLoS Negl Trop Dis ; 17(5): e0011356, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37253037

RESUMO

INTRODUCTION: Dengue is a major public health challenge and a growing problem due to climate change. The release of Aedes aegypti mosquitoes infected with the intracellular bacterium Wolbachia is a novel form of vector control against dengue. However, there remains a need to evaluate the benefits of such an intervention at a large scale. In this paper, we evaluate the potential economic impact and cost-effectiveness of scaled Wolbachia deployments as a form of dengue control in Vietnam-targeted at the highest burden urban areas. METHODS: Ten settings within Vietnam were identified as priority locations for potential future Wolbachia deployments (using a population replacement strategy). The effectiveness of Wolbachia deployments in reducing the incidence of symptomatic dengue cases was assumed to be 75%. We assumed that the intervention would maintain this effectiveness for at least 20 years (but tested this assumption in the sensitivity analysis). A cost-utility analysis and cost-benefit analysis were conducted. RESULTS: From the health sector perspective, the Wolbachia intervention was projected to cost US$420 per disability-adjusted life year (DALY) averted. From the societal perspective, the overall cost-effectiveness ratio was negative, i.e. the economic benefits outweighed the costs. These results are contingent on the long-term effectiveness of Wolbachia releases being sustained for 20 years. However, the intervention was still classed as cost-effective across the majority of the settings when assuming only 10 years of benefits. CONCLUSION: Overall, we found that targeting high burden cities with Wolbachia deployments would be a cost-effective intervention in Vietnam and generate notable broader benefits besides health gains.


Assuntos
Aedes , Dengue , Wolbachia , Animais , Humanos , Análise Custo-Benefício , Dengue/epidemiologia , Dengue/prevenção & controle , Vietnã/epidemiologia , Mosquitos Vetores , Aedes/microbiologia
9.
Front Digit Health ; 5: 1057467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910574

RESUMO

Background: Increased data availability has prompted the creation of clinical decision support systems. These systems utilise clinical information to enhance health care provision, both to predict the likelihood of specific clinical outcomes or evaluate the risk of further complications. However, their adoption remains low due to concerns regarding the quality of recommendations, and a lack of clarity on how results are best obtained and presented. Methods: We used autoencoders capable of reducing the dimensionality of complex datasets in order to produce a 2D representation denoted as latent space to support understanding of complex clinical data. In this output, meaningful representations of individual patient profiles are spatially mapped in an unsupervised manner according to their input clinical parameters. This technique was then applied to a large real-world clinical dataset of over 12,000 patients with an illness compatible with dengue infection in Ho Chi Minh City, Vietnam between 1999 and 2021. Dengue is a systemic viral disease which exerts significant health and economic burden worldwide, and up to 5% of hospitalised patients develop life-threatening complications. Results: The latent space produced by the selected autoencoder aligns with established clinical characteristics exhibited by patients with dengue infection, as well as features of disease progression. Similar clinical phenotypes are represented close to each other in the latent space and clustered according to outcomes broadly described by the World Health Organisation dengue guidelines. Balancing distance metrics and density metrics produced results covering most of the latent space, and improved visualisation whilst preserving utility, with similar patients grouped closer together. In this case, this balance is achieved by using the sigmoid activation function and one hidden layer with three neurons, in addition to the latent dimension layer, which produces the output (Pearson, 0.840; Spearman, 0.830; Procrustes, 0.301; GMM 0.321). Conclusion: This study demonstrates that when adequately configured, autoencoders can produce two-dimensional representations of a complex dataset that conserve the distance relationship between points. The output visualisation groups patients with clinically relevant features closely together and inherently supports user interpretability. Work is underway to incorporate these findings into an electronic clinical decision support system to guide individual patient management.

10.
Parasit Vectors ; 16(1): 108, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934294

RESUMO

BACKGROUND: Introgression of the bacterial endosymbiont Wolbachia into Aedes aegypti populations is a biocontrol approach being used to reduce arbovirus transmission. This requires mass release of Wolbachia-infected mosquitoes. While releases have been conducted using a variety of techniques, egg releases, using water-soluble capsules containing mosquito eggs and larval food, offer an attractive method due to its potential to reduce onsite resource requirements. However, optimisation of this approach is required to ensure there is no detrimental impact on mosquito fitness and to promote successful Wolbachia introgression. METHODS: We determined the impact of storage time and temperature on wild-type (WT) and Wolbachia-infected (wMel or wAlbB strains) Ae. aegypti eggs. Eggs were stored inside capsules over 8 weeks at 18 °C or 22 °C and hatch rate, emergence rate and Wolbachia density were determined. We next examined egg quality and Wolbachia density after exposing eggs to 4-40 °C to determine how eggs may be impacted if exposed to extreme temperatures during shipment. RESULTS: Encapsulating eggs for 8 weeks did not negatively impact egg viability or resulting adult emergence and Wolbachia density compared to controls. When eggs were exposed to temperatures within 4-36 °C for 48 h, their viability and resulting adult Wolbachia density were maintained; however, both were significantly reduced when exposed to 40 °C. CONCLUSIONS: We describe the time and temperature limits for maintaining viability of Wolbachia-infected Ae. aegypti eggs when encapsulated or exposed to extreme temperatures. These findings could improve the efficiency of mass releases by providing transport and storage constraints to ensure only high-quality material is utilised during field releases.


Assuntos
Aedes , Wolbachia , Animais , Temperatura , Mosquitos Vetores , Ovos
11.
Lancet Glob Health ; 11(3): e361-e372, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796983

RESUMO

BACKGROUND: Improvements in the early diagnosis of dengue are urgently needed, especially in resource-limited settings where the distinction between dengue and other febrile illnesses is crucial for patient management. METHODS: In this prospective, observational study (IDAMS), we included patients aged 5 years and older with undifferentiated fever at presentation from 26 outpatient facilities in eight countries (Bangladesh, Brazil, Cambodia, El Salvador, Indonesia, Malaysia, Venezuela, and Viet Nam). We used multivariable logistic regression to investigate the association between clinical symptoms and laboratory tests with dengue versus other febrile illnesses between day 2 and day 5 after onset of fever (ie, illness days). We built a set of candidate regression models including clinical and laboratory variables to reflect the need of a comprehensive versus parsimonious approach. We assessed performance of these models via standard measures of diagnostic values. FINDINGS: Between Oct 18, 2011, and Aug 4, 2016, we recruited 7428 patients, of whom 2694 (36%) were diagnosed with laboratory-confirmed dengue and 2495 (34%) with (non-dengue) other febrile illnesses and met inclusion criteria, and were included in the analysis. 2703 (52%) of 5189 included patients were younger than 15 years, 2486 (48%) were aged 15 years or older, 2179 (42%) were female and 3010 (58%) were male. Platelet count, white blood cell count, and the change in these variables from the previous day of illness had a strong association with dengue. Cough and rhinitis had strong associations with other febrile illnesses, whereas bleeding, anorexia, and skin flush were generally associated with dengue. Model performance increased between day 2 and 5 of illness. The comprehensive model (18 clinical and laboratory predictors) had sensitivities of 0·80 to 0·87 and specificities of 0·80 to 0·91, whereas the parsimonious model (eight clinical and laboratory predictors) had sensitivities of 0·80 to 0·88 and specificities of 0·81 to 0·89. A model that includes laboratory markers that are easy to measure (eg, platelet count or white blood cell count) outperformed the models based on clinical variables only. INTERPRETATION: Our results confirm the important role of platelet and white blood cell counts in diagnosing dengue, and the importance of serial measurements over subsequent days. We successfully quantified the performance of clinical and laboratory markers covering the early period of dengue. Resulting algorithms performed better than published schemes for distinction of dengue from other febrile illnesses, and take into account the dynamic changes over time. Our results provide crucial information needed for the update of guidelines, including the Integrated Management of Childhood Illness handbook. FUNDING: EU's Seventh Framework Programme. TRANSLATIONS: For the Bangla, Bahasa Indonesia, Portuguese, Khmer, Spanish and Vietnamese translations of the abstract see Supplementary Materials section.


Assuntos
Febre , Humanos , Masculino , Feminino , Estudos Prospectivos , América Latina/epidemiologia , Ásia , Biomarcadores , Bangladesh , Febre/etiologia , Febre/diagnóstico
12.
Glob Health Action ; 16(1): 2166650, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36700745

RESUMO

BACKGROUND: Releases of Wolbachia (wMel)-infected Aedes aegypti mosquitoes significantly reduced the incidence of virologically confirmed dengue in a previous cluster randomised trial in Yogyakarta City, Indonesia. Following the trial, wMel releases were extended to the untreated control areas, to achieve city-wide coverage of Wolbachia. OBJECTIVE: In this predefined analysis, we evaluated the impact of the wMel deployments in Yogyakarta on dengue hemorrhagic fever (DHF) case notifications and on the frequency of perifocal insecticide spraying by public health teams. METHODS: Monthly counts of DHF cases notified to the Yogyakarta District Health Office between January 2006 and May 2022 were modelled as a function of time-varying local wMel treatment status (fully- and partially-treated vs untreated, and by quintile of wMel prevalence). The frequency of insecticide fogging in wMel-treated and untreated areas was analysed using negative binomial regression. RESULTS: Notified DHF incidence was 83% lower in fully treated vs untreated periods (IRR 0.17 [95% CI 0.14, 0.20]), and 78% lower in areas with 80-100% wMel prevalence compared to areas with 0-20% wMel (IRR 0.23 [0.17, 0.30]). A similar intervention effect was observed at 60-80% wMel prevalence as at 80-100% prevalence (76% vs 78% efficacy, respectively). Pre-intervention, insecticide fogging occurred at similar frequencies in areas later randomised to wMel-treated and untreated arms of the trial. After wMel deployment, fogging occurred significantly less frequently in treated areas (IRR 0.17 [0.10, 0.30]). CONCLUSIONS: Deployments of wMel-infected Aedes aegypti mosquitoes resulted in an 83% reduction in the application of perifocal insecticide spraying, consistent with lower dengue case notifications in wMel-treated areas. These results show that the Wolbachia intervention effect demonstrated previously in a cluster randomised trial was also measurable from routine surveillance data.


Assuntos
Aedes , Vírus da Dengue , Dengue , Inseticidas , Wolbachia , Animais , Humanos , Dengue/epidemiologia , Dengue/prevenção & controle
13.
Emerg Infect Dis ; 29(1): 160-163, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573590

RESUMO

We assessed predominantly pediatric patients in Vietnam with dengue and other febrile illness 3 months after acute illness. Among dengue patients, 47% reported >1 postacute symptom. Most resolved by 3 months, but alopecia and vision problems often persisted. Our findings provide additional evidence on postacute dengue burden and confirm children are affected.


Assuntos
Dengue , Humanos , Criança , Dengue/complicações , Dengue/diagnóstico , Dengue/epidemiologia , Vietnã/epidemiologia
14.
Sci Rep ; 12(1): 9890, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701454

RESUMO

Dengue exhibits focal clustering in households and neighborhoods, driven by local mosquito population dynamics, human population immunity, and fine scale human and mosquito movement. We tested the hypothesis that spatiotemporal clustering of homotypic dengue cases is disrupted by introduction of the arbovirus-blocking bacterium Wolbachia (wMel-strain) into the Aedes aegypti mosquito population. We analysed 318 serotyped and geolocated dengue cases (and 5921 test-negative controls) from a randomized controlled trial in Yogyakarta, Indonesia of wMel deployments. We find evidence of spatial clustering up to 300 m among the 265 dengue cases (3083 controls) in the untreated trial arm. Participant pairs enrolled within 30 days and 50 m had a 4.7-fold increase (compared to 95% CI on permutation-based null distribution: 0.1, 1.2) in the odds of being homotypic (i.e. potentially transmission-related) as compared to pairs occurring at any distance. In contrast, we find no evidence of spatiotemporal clustering among the 53 dengue cases (2838 controls) resident in the wMel-treated arm. Introgression of wMel Wolbachia into Aedes aegypti mosquito populations interrupts focal dengue virus transmission leading to reduced case incidence; the true intervention effect may be greater than the 77% efficacy measured in the primary analysis of the Yogyakarta trial.


Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Animais , Análise por Conglomerados , Vírus da Dengue/genética , Humanos , Indonésia/epidemiologia , Controle Biológico de Vetores , Wolbachia/genética
15.
Infect Genet Evol ; 102: 105308, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644356

RESUMO

Dengue has been endemic in Yogyakarta, Indonesia for decades. Here, we report the dengue epidemiology, entomology, and virology in Yogyakarta in 2016-2017, prior to the commencement of the Applying Wolbachia to Eliminate Dengue (AWED) randomized trial. Dengue epidemiological data were compiled and blood samples from dengue-suspected patients were tested for dengue virus (DENV). Ae. aegypti mosquito samples were caught from the field using BG-Sentinel traps and tested for the presence of DENV infection. Sequencing of the DENV E gene was used to determine the phylogeny and genotypes of circulating DENV. Within the last decade, the 2016-2017 dengue incidence was considered very high. Among the 649 plasma samples collected between March 2016-February 2017; and 36,910 mosquito samples collected between December 2016-May 2017, a total of 197 and 38 samples were DENV-positive by qRT-PCR, respectively. All four DENV serotypes were detected, with DENV-3 (n = 88; 44.67%) and DENV-1 (n = 87; 44.16%) as the predominant serotype, followed by DENV-4 (n = 12; 6.09%) and DENV-2 (n = 10; 5.08%). The Yogyakarta DENV-1 isolates were classified into Genotype I and IV, while DENV-2, DENV-3, and DENV-4 isolates were classified into the Cosmopolitan genotype, Genotype I, and Genotype II, respectively. Yogyakarta DENV isolates were closely related to Indonesian strains from neighboring Javanese cities, consistent with the endemic circulation of DENV on this highly populous island. Our study provides comprehensive baseline information on the DENV population genetic characteristics in Yogyakarta, which are useful as baseline data for the AWED trial and the future DENV surveillance in the city in the presence of a Wolbachia-infected Ae. aegypti population.


Assuntos
Culicidae , Vírus da Dengue , Dengue , Wolbachia , Animais , Cidades , Dengue/epidemiologia , Genética Populacional , Genótipo , Humanos , Indonésia/epidemiologia , Filogenia , Sorogrupo , Wolbachia/genética
16.
Pathogens ; 11(5)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35631057

RESUMO

Wolbachia is an endosymbiotic bacterium that can restrict the transmission of human pathogenic viruses by Aedes aegypti mosquitoes. Recent field trials have shown that dengue incidence is significantly reduced when Wolbachia is introgressed into the local Ae. aegypti population. Female Ae. aegypti are anautogenous and feed on human blood to produce viable eggs. Herein, we tested whether people who reside on Tri Nguyen Island (TNI), Vietnam developed antibodies to Wolbachia Surface Protein (WSP) following release of Wolbachia-infected Ae. aegypti, as a measure of exposure to Wolbachia. Paired blood samples were collected from 105 participants before and after mosquito releases and anti-WSP titres were measured by ELISA. We determined no change in anti-WSP titres after ~30 weeks of high levels of Wolbachia-Ae. aegypti on TNI. These data suggest that humans are not exposed to the major Wolbachia surface antigen, WSP, following introgression of Wolbachia-infected Ae. aegypti mosquitoes.

17.
PLoS Negl Trop Dis ; 16(4): e0010284, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442957

RESUMO

The Applying Wolbachia to Eliminate Dengue (AWED) trial was a parallel cluster randomised trial that demonstrated Wolbachia (wMel) introgression into Ae. aegypti populations reduced dengue incidence. In this predefined substudy, we compared between treatment arms, the relative abundance of Ae. aegypti and Ae. albopictus before, during and after wMel-introgression. Between March 2015 and March 2020, 60,084 BG trap collections yielded 478,254 Ae. aegypti and 17,623 Ae. albopictus. Between treatment arms there was no measurable difference in Ae. aegypti relative abundance before or after wMel-deployments, with a count ratio of 0.96 (95% CI 0.76, 1.21) and 1.00 (95% CI 0.85, 1.17) respectively. More Ae. aegypti were caught per trap per week in the wMel-intervention arm compared to the control arm during wMel deployments (count ratio 1.23 (95% CI 1.03, 1.46)). Between treatment arms there was no measurable difference in the Ae. albopictus population size before, during or after wMel-deployment (overall count ratio 1.10 (95% CI 0.89, 1.35)). We also compared insecticide resistance phenotypes of Ae. aegypti in the first and second years after wMel-deployments. Ae. aegypti field populations from wMel-treated and untreated arms were similarly resistant to malathion (0.8%), permethrin (1.25%) and cyfluthrin (0.15%) in year 1 and year 2 of the trial. In summary, we found no between-arm differences in the relative abundance of Ae. aegypti or Ae. albopictus prior to or after wMel introgression, and no between-arm difference in Ae. aegypti insecticide resistance phenotypes. These data suggest neither Aedes abundance, nor insecticide resistance, confounded the epidemiological outcomes of the AWED trial.


Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Animais , Dengue/epidemiologia , Dengue/prevenção & controle , Resistência a Inseticidas , Mosquitos Vetores
18.
Front Digit Health ; 4: 849641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360365

RESUMO

Background: Symptomatic dengue infection can result in a life-threatening shock syndrome and timely diagnosis is essential. Point-of-care tests for non-structural protein 1 and IgM are used widely but performance can be limited. We developed a supervised machine learning model to predict whether patients with acute febrile illnesses had a diagnosis of dengue or other febrile illnesses (OFI). The impact of seasonality on model performance over time was examined. Methods: We analysed data from a prospective observational clinical study in Vietnam. Enrolled patients presented with an acute febrile illness of <72 h duration. A gradient boosting model (XGBoost) was used to predict final diagnosis using age, sex, haematocrit, platelet, white cell, and lymphocyte count collected on enrolment. Data was randomly split 80/20% into a training and hold-out set, respectively, with the latter not used in model development. Cross-validation and hold out set testing was used, with performance over time evaluated through a rolling window approach. Results: We included 8,100 patients recruited between 16th October 2010 and 10th December 2014. In total 2,240 (27.7%) patients were diagnosed with dengue infection. The optimised model from training data had an overall median area under the receiver operator curve (AUROC) of 0.86 (interquartile range 0.84-0.86), specificity of 0.92, sensitivity of 0.56, positive predictive value of 0.73, negative predictive value (NPV) of 0.84, and Brier score of 0.13 in predicting the final diagnosis, with similar performances in hold-out set testing (AUROC of 0.86). Model performances varied significantly over time as a function of seasonality and other factors. Incorporation of a dynamic threshold which continuously learns from recent cases resulted in a more consistent performance throughout the year (NPV >90%). Conclusion: Supervised machine learning models are able to discriminate between dengue and OFI diagnoses in patients presenting with an early undifferentiated febrile illness. These models could be of clinical utility in supporting healthcare decision-making and provide passive surveillance across dengue endemic regions. Effects of seasonality and changing disease prevalence must however be taken into account-this is of significant importance given unpredictable effects of human-induced climate change and the impact on health.

19.
Trials ; 23(1): 185, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236394

RESUMO

BACKGROUND: Arboviruses transmitted by Aedes aegypti including dengue, Zika, and chikungunya are a major global health problem, with over 2.5 billion at risk for dengue alone. There are no licensed antivirals for these infections, and safe and effective vaccines are not yet widely available. Thus, prevention of arbovirus transmission by vector modification is a novel approach being pursued by multiple researchers. However, the field needs high-quality evidence derived from randomized, controlled trials upon which to base the implementation and maintenance of vector control programs. Here, we report the EVITA Dengue trial design (DMID 17-0111), which assesses the efficacy in decreasing arbovirus transmission of an innovative approach developed by the World Mosquito Program for vector modification of Aedes mosquitoes by Wolbachia pipientis. METHODS: DMID 17-0111 is a cluster-randomized trial in Belo Horizonte, Brazil, with clusters defined by primary school catchment areas. Clusters (n = 58) will be randomized 1:1 to intervention (release of Wolbachia-infected Aedes aegypti mosquitoes) vs. control (no release). Standard vector control activities (i.e., insecticides and education campaigns for reduction of mosquito breeding sites) will continue as per current practice in the municipality. Participants (n = 3480, 60 per cluster) are children aged 6-11 years enrolled in the cluster-defining school and living within the cluster boundaries who will undergo annual serologic surveillance for arboviral infection. The primary objective is to compare sero-incidence of arboviral infection between arms. DISCUSSION: DMID 17-0111 aims to determine the efficacy of Wolbachia-infected mosquito releases in reducing human infections by arboviruses transmitted by Aedes aegypti and will complement the mounting evidence for this method from large-scale field releases and ongoing trials. The trial also represents a critical step towards robustness and rigor for how vector control methods are assessed, including the simultaneous measurement and correlation of entomologic and epidemiologic outcomes. Data from this trial will inform further the development of novel vector control methods. TRIAL REGISTRATION: ClinicalTrials.gov NCT04514107 . Registered on 17 August 2020 Primary sponsor: National Institute of Health, National Institute of Allergy and Infectious Diseases.


Assuntos
Aedes , Vírus da Dengue , Dengue , Wolbachia , Infecção por Zika virus , Zika virus , Animais , Brasil/epidemiologia , Criança , Dengue/epidemiologia , Dengue/prevenção & controle , Humanos , Incidência , Mosquitos Vetores , Infecção por Zika virus/epidemiologia
20.
PLOS Digit Health ; 1(1): e0000005, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36812518

RESUMO

BACKGROUND: Identifying patients at risk of dengue shock syndrome (DSS) is vital for effective healthcare delivery. This can be challenging in endemic settings because of high caseloads and limited resources. Machine learning models trained using clinical data could support decision-making in this context. METHODS: We developed supervised machine learning prediction models using pooled data from adult and paediatric patients hospitalised with dengue. Individuals from 5 prospective clinical studies in Ho Chi Minh City, Vietnam conducted between 12th April 2001 and 30th January 2018 were included. The outcome was onset of dengue shock syndrome during hospitalisation. Data underwent random stratified splitting at 80:20 ratio with the former used only for model development. Ten-fold cross-validation was used for hyperparameter optimisation and confidence intervals derived from percentile bootstrapping. Optimised models were evaluated against the hold-out set. FINDINGS: The final dataset included 4,131 patients (477 adults and 3,654 children). DSS was experienced by 222 (5.4%) of individuals. Predictors were age, sex, weight, day of illness at hospitalisation, indices of haematocrit and platelets over first 48 hours of admission and before the onset of DSS. An artificial neural network model (ANN) model had best performance with an area under receiver operator curve (AUROC) of 0.83 (95% confidence interval [CI], 0.76-0.85) in predicting DSS. When evaluated against the independent hold-out set this calibrated model exhibited an AUROC of 0.82, specificity of 0.84, sensitivity of 0.66, positive predictive value of 0.18 and negative predictive value of 0.98. INTERPRETATION: The study demonstrates additional insights can be obtained from basic healthcare data, when applied through a machine learning framework. The high negative predictive value could support interventions such as early discharge or ambulatory patient management in this population. Work is underway to incorporate these findings into an electronic clinical decision support system to guide individual patient management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...